Description of parameters in evaluation_config.yaml
The evaluation_config.yaml file contains the necessary parameters for running the Erase Diff evaluation framework. Below is a detailed description of each parameter along with examples.
Model Configuration:
- ckpt_path : Path to the finetuned Stable Diffusion checkpoint file to be evaluated.
- Type:
str -
Example:
"outputs/erase_diff/finetuned_models/erase_diff_Abstractionism_model.pth" -
classification_model : Specifies the classification model used for evaluating the generated outputs.
- Type:
str - Example:
"vit_large_patch16_224"
Training and Sampling Parameters:
- devices : CUDA device IDs to be used for the evaluation process.
- Type:
str -
Example:
"0" -
cfg_text : Classifier-free guidance scale value for image generation. Higher values increase the strength of the conditioning prompt.
- Type:
float -
Example:
9.0 -
seed : Random seed for reproducibility of results.
- Type:
int -
Example:
188 -
ddim_steps : Number of steps for the DDIM (Denoising Diffusion Implicit Models) sampling process.
- Type:
int -
Example:
100 -
ddim_eta : DDIM eta value for controlling the amount of randomness during sampling. Set to
0for deterministic sampling. - Type:
float -
Example:
0.0 -
image_height : Height of the generated images in pixels.
- Type:
int -
Example:
512 -
image_width : Width of the generated images in pixels.
- Type:
int - Example:
512
Output and Logging Parameters:
- sampler_output_dir : Directory where generated images will be saved during evaluation.
- Type:
str - Example:
"outputs/eval_results/mu_results/erase_diff/"
Optimization Parameters:
- forget_theme : Concept or style intended for removal in the evaluation process.
- Type:
str -
Example:
"Bricks" -
use_sample: If you want to just run on sample dataset then set it as True. By default it is True.
- Type:
bool - Example:
True