Description of parameters in evaluation_config.yaml
The evaluation_config.yaml
file contains the necessary parameters for running the forget_me_not evaluation framework. Below is a detailed description of each parameter along with examples.
Model Configuration:
- ckpt_path : Path to the finetuned Stable Diffusion checkpoint file to be evaluated.
- Type:
str
-
Example:
"outputs/forget_me_not/finetuned_models/forget_me_not_Abstractionism_model.pth"
-
classification_model : Specifies the classification model used for evaluating the generated outputs.
- Type:
str
- Example:
"vit_large_patch16_224"
Training and Sampling Parameters:
- theme : Specifies the theme or concept being evaluated for removal from the model's outputs.
- Type:
str
-
Example:
"Bricks"
-
devices : CUDA device IDs to be used for the evaluation process.
- Type:
str
-
Example:
"0"
-
cfg_text_list : Classifier-free guidance scale value for image generation. Higher values increase the strength of the conditioning prompt.
- Type:
list
-
Example:
[9.0]
-
seed : Random seed for reproducibility of results.
- Type:
int
-
Example:
188
-
ddim_steps : Number of steps for the DDIM (Denoising Diffusion Implicit Models) sampling process.
- Type:
int
-
Example:
100
-
ddim_eta : DDIM eta value for controlling the amount of randomness during sampling. Set to
0
for deterministic sampling. - Type:
float
-
Example:
0.0
-
image_height : Height of the generated images in pixels.
- Type:
int
-
Example:
512
-
image_width : Width of the generated images in pixels.
- Type:
int
- Example:
512
Output and Logging Parameters:
- sampler_output_dir : Directory where generated images will be saved during evaluation.
- Type:
str
- Example:
"outputs/eval_results/mu_results/forget_me_not/"
Optimization Parameters:
- forget_theme : Concept or style intended for removal in the evaluation process.
- Type:
str
-
Example:
"Bricks"
-
seed_list : List of random seeds for performing multiple evaluations with different randomness levels.
- Type:
list
-
Example:
["188"]
-
use_sample: If you want to just run on sample dataset then set it as True. By default it is True.
- Type:
bool
- Example:
True