Description of parameters in evaluation_config.yaml

The evaluation_config.yaml file contains the necessary parameters for running the Semipermeable membrane evaluation framework. Below is a detailed description of each parameter along with examples.


Model Configuration Parameters:

  • spm_path: paths to finetuned model checkpoint.
  • Type: list
  • Example: outputs/semipermeable_membrane/finetuned_models/semipermeable_membrane_Abstractionism_last.safetensors

  • precision : Specifies the numerical precision for model computation.

  • Type: str
  • Options: "fp32", "fp16", "bf16"
  • Example: "fp32"

  • spm_multiplier: Specifies the multiplier for Semipermeable Membrane (SPM) model.

  • Type: float
  • Example: 1.0

  • v2 : Specifies whether to use version 2.x of the model.

  • Type: bool
  • Example: false

  • matching_metric : Metric used for evaluating the similarity between generated prompts and erased concepts.

  • Type: str
  • Options: "clipcos", "clipcos_tokenuni", "tokenuni"
  • Example: "clipcos_tokenuni"

  • model_config : Path to the model configuration YAML file.

  • Type: str
  • Example: "mu/algorithms/semipermeable_membrane/config"

  • model_ckpt_path: Path to pretrained Stable Diffusion model.

  • Type: str
  • Example: models/diffuser/style50

Sampling Parameters:

  • seed : Random seed for reproducibility of the evaluation process.
  • Type: int
  • Example: 188

  • devices : Specifies the CUDA devices for running the model.

  • Type: str (Comma-separated for multiple devices)
  • Example: "0"

  • task : Specifies the task type for the evaluation process.

  • Type: str
  • Options: "class", "style"
  • Example: "class"

Output Parameters:

  • sampler_output_dir : Directory where generated images will be saved during the sampling process.
  • Type: str
  • Example: "outputs/eval_results/mu_results/semipermeable_membrane/"

Dataset and Classification Parameters:

  • reference_dir : Path to the reference dataset used for evaluation and comparison.
  • Type: str
  • Example: "msu_unlearningalgorithm/data/quick-canvas-dataset/sample/"

  • classification_model : Specifies the classification model used for the evaluation.

  • Type: str
  • Example: "vit_large_patch16_224"

  • forget_theme : Specifies the theme to be forgotten during the unlearning process.

  • Type: str
  • Example: "Bricks"

Performance Parameters:

  • seed_list : List of random seeds for multiple evaluation trials.
  • Type: list
  • Example: ["188"]

  • use_sample: If you want to just run on sample dataset then set it as True. By default it is True.

  • Type: bool
  • Example: True