Description of parameters in evaluation_config.yaml
The evaluation_config.yaml
file contains the necessary parameters for running the Semipermeable membrane evaluation framework. Below is a detailed description of each parameter along with examples.
Model Configuration Parameters:
- spm_path: paths to finetuned model checkpoint.
- Type:
list
-
Example:
outputs/semipermeable_membrane/finetuned_models/semipermeable_membrane_Abstractionism_last.safetensors
-
precision : Specifies the numerical precision for model computation.
- Type:
str
- Options:
"fp32"
,"fp16"
,"bf16"
-
Example:
"fp32"
-
spm_multiplier: Specifies the multiplier for Semipermeable Membrane (SPM) model.
- Type:
float
-
Example:
1.0
-
v2 : Specifies whether to use version 2.x of the model.
- Type:
bool
-
Example:
false
-
matching_metric : Metric used for evaluating the similarity between generated prompts and erased concepts.
- Type:
str
- Options:
"clipcos"
,"clipcos_tokenuni"
,"tokenuni"
-
Example:
"clipcos_tokenuni"
-
model_config : Path to the model configuration YAML file.
- Type:
str
-
Example:
"mu/algorithms/semipermeable_membrane/config"
-
model_ckpt_path: Path to pretrained Stable Diffusion model.
- Type:
str
- Example:
models/diffuser/style50
Sampling Parameters:
- seed : Random seed for reproducibility of the evaluation process.
- Type:
int
-
Example:
188
-
devices : Specifies the CUDA devices for running the model.
- Type:
str
(Comma-separated for multiple devices) -
Example:
"0"
-
task : Specifies the task type for the evaluation process.
- Type:
str
- Options:
"class"
,"style"
- Example:
"class"
Output Parameters:
- sampler_output_dir : Directory where generated images will be saved during the sampling process.
- Type:
str
- Example:
"outputs/eval_results/mu_results/semipermeable_membrane/"
Dataset and Classification Parameters:
- reference_dir : Path to the reference dataset used for evaluation and comparison.
- Type:
str
-
Example:
"msu_unlearningalgorithm/data/quick-canvas-dataset/sample/"
-
classification_model : Specifies the classification model used for the evaluation.
- Type:
str
-
Example:
"vit_large_patch16_224"
-
forget_theme : Specifies the theme to be forgotten during the unlearning process.
- Type:
str
- Example:
"Bricks"
Performance Parameters:
- seed_list : List of random seeds for multiple evaluation trials.
- Type:
list
-
Example:
["188"]
-
use_sample: If you want to just run on sample dataset then set it as True. By default it is True.
- Type:
bool
- Example:
True