Example Usage of existing unlearn algorithms
Add the following code snippet to a python script trainer.py
. Run the script using python trainer.py
.
from mu.algorithms.concept_ablation.algorithm import (
ConceptAblationAlgorithm,
)
from mu.algorithms.concept_ablation.configs import (
concept_ablation_train_mu,
ConceptAblationConfig,
)
if __name__ == "__main__":
concept_ablation_train_mu.lightning.trainer.max_steps = 5
algorithm = ConceptAblationAlgorithm(
concept_ablation_train_mu,
config_path="mu/algorithms/concept_ablation/configs/train_config.yaml",
ckpt_path="machine_unlearning/models/compvis/style50/compvis.ckpt",
prompts="mu/algorithms/concept_ablation/data/anchor_prompts/finetune_prompts/sd_prompt_Architectures_sample.txt",
output_dir="outputs/concept_ablation/outputs",
template_name = "Abstractionism", #concept to erase
dataset_type = "unlearncanvas" ,
use_sample = True, #train on sample dataset
# devices="1",
)
algorithm.run()
Notes
- Ensure all dependencies are installed as per the environment file.
- The training process generates logs in the
logs/
directory for easy monitoring. - Use appropriate CUDA devices for optimal performance during training.
- Regularly verify dataset and model configurations to avoid errors during execution.