Run Train using Unlearn Canvas dataset
Create a file, eg, my_trainer.py
and use examples and modify your configs to run the file.
Example Code
from mu.algorithms.esd.algorithm import ESDAlgorithm
from mu.algorithms.esd.configs import (
esd_train_mu,
)
algorithm = ESDAlgorithm(
esd_train_mu,
ckpt_path="machine_unlearning/models/compvis/style50/compvis.ckpt",
raw_dataset_dir=(
"data/quick-canvas-dataset/sample"
),
template_name = "Abstractionism", #concept to erase
dataset_type = "unlearncanvas" ,
template = "class",
use_sample = True, #train on sample dataset
output_dir = "outputs/esd/finetuned_models" #output dir to save finetuned models
)
algorithm.run()
Running the Training Script in Offline Mode
WANDB_MODE=offline python my_trainer.py
How It Works * Default Values: The script first loads default values from the train config file as in configs section.
-
Parameter Overrides: Any parameters passed directly to the algorithm, overrides these configs.
-
Final Configuration: The script merges the configs and convert them into dictionary to proceed with the training.