First download the full_fisher_dict.pkl file.
wget https://huggingface.co/ajrheng/selective-amnesia/resolve/main/full_fisher_dict.pkl
Run train
Create a file, eg, my_trainer.py
and use examples and modify your configs to run the file.
Using Unlearn Canvas dataset
from mu.algorithms.selective_amnesia.algorithm import SelectiveAmnesiaAlgorithm
from mu.algorithms.selective_amnesia.configs import (
selective_amnesia_config_unlearn_canvas,
)
algorithm = SelectiveAmnesiaAlgorithm(
selective_amnesia_config_unlearn_canvas,
ckpt_path="models/compvis/style50/compvis.ckpt",
raw_dataset_dir=(
"data/quick-canvas-dataset/sample"
),
dataset_type = "unlearncanvas",
template = "style",
template_name = "Abstractionism",
use_sample = True # to run on sample dataset
)
algorithm.run()
Run the script
WANDB_MODE=offline python my_trainer.py
How It Works * Default Values: The script first loads default values from the train config file as in configs section.
-
Parameter Overrides: Any parameters passed directly to the algorithm, overrides these configs.
-
Final Configuration: The script merges the configs and convert them into dictionary to proceed with the training.
Notes
- Ensure all dependencies are installed as per the environment file.
- The training process generates logs in the
logs/
directory for easy monitoring. - Use appropriate CUDA devices for optimal performance during training.
- Regularly verify dataset and model configurations to avoid errors during execution.