Run Train
Create a file, eg, my_trainer.py
and use examples and modify your configs to run the file.
Using Unlearn Canvas dataset
from mu.algorithms.semipermeable_membrane.algorithm import (
SemipermeableMembraneAlgorithm,
)
from mu.algorithms.semipermeable_membrane.configs import (
semipermiable_membrane_train_mu,
SemipermeableMembraneConfig,
)
algorithm = SemipermeableMembraneAlgorithm(
semipermiable_membrane_train_mu,
output_dir="/opt/dlami/nvme/outputs",
train={"iterations": 2},
use_sample = True # to run on sample dataset
)
algorithm.run()
Using Unlearn Canvas dataset
from mu.algorithms.semipermeable_membrane.algorithm import (
SemipermeableMembraneAlgorithm,
)
from mu.algorithms.semipermeable_membrane.configs import (
semipermiable_membrane_train_i2p,
SemipermeableMembraneConfig,
)
algorithm = SemipermeableMembraneAlgorithm(
semipermiable_membrane_train_i2p,
output_dir="/opt/dlami/nvme/outputs",
train={"iterations": 2},
use_sample = True # to run on sample dataset
dataset_type = "i2p",
template_name = "self-harm",
)
algorithm.run()
Running the Training Script in Offline Mode
WANDB_MODE=offline python my_trainer.py
How It Works * Default Values: The script first loads default values from the train config file as in configs section.
-
Parameter Overrides: Any parameters passed directly to the algorithm, overrides these configs.
-
Final Configuration: The script merges the configs and convert them into dictionary to proceed with the training.