Run Train
Create a file, eg, my_trainer.py
and use examples and modify your configs to run the file.
Using Unlearn Canvas dataset
from mu.algorithms.unified_concept_editing.algorithm import (
UnifiedConceptEditingAlgorithm,
)
from mu.algorithms.unified_concept_editing.configs import (
unified_concept_editing_train_mu,
)
algorithm = UnifiedConceptEditingAlgorithm(
unified_concept_editing_train_mu,
ckpt_path="models/diffuser/style50/",
raw_dataset_dir=(
"data/quick-canvas-dataset/sample"
),
output_dir="/opt/dlami/nvme/outputs",
)
algorithm.run()
Running the Training Script in Offline Mode
WANDB_MODE=offline python my_trainer.py
How It Works * Default Values: The script first loads default values from the train config file as in configs section.
-
Parameter Overrides: Any parameters passed directly to the algorithm, overrides these configs.
-
Final Configuration: The script merges the configs and convert them into dictionary to proceed with the training.