You can modify the parameters, when using config class itself. View the config docs to see a list of available parameters that you can use.
Train a text inversion (train_ti)
Using default config
from mu.algorithms.forget_me_not.algorithm import ForgetMeNotAlgorithm
from mu.algorithms.forget_me_not.configs import (
forget_me_not_train_ti_mu,
)
algorithm = ForgetMeNotAlgorithm(
forget_me_not_train_ti_mu
)
algorithm.run(train_type="train_ti")
Modify some parameters in pre-defined config class
from mu.algorithms.forget_me_not.algorithm import ForgetMeNotAlgorithm
from mu.algorithms.forget_me_not.configs import (
forget_me_not_train_ti_mu,
)
algorithm = ForgetMeNotAlgorithm(
forget_me_not_train_ti_mu,
ckpt_path="models/diffuser/style50",
raw_dataset_dir=(
"data/quick-canvas-dataset/sample"
),
steps=10
)
algorithm.run(train_type="train_ti")
Create your own config class
from mu.algorithms.forget_me_not.algorithm import ForgetMeNotAlgorithm
from mu.algorithms.forget_me_not.configs import (
ForgetMeNotTiConfig,
)
myconfig = ForgetMeNotTiConfig()
myconfig.ckpt_path = "models/diffuser/style50"
myconfig.steps = 1
algorithm = ForgetMeNotAlgorithm(
myconfig
)
algorithm.run(train_type="train_ti")
Perform unlearning by using train attn.
Before running the train_attn
script, update the ti_weights_path
parameter in the configuration file to point to the output generated from the Text Inversion (train_ti.py) stage
Using default config
from mu.algorithms.forget_me_not.algorithm import ForgetMeNotAlgorithm
from mu.algorithms.forget_me_not.configs import (
forget_me_not_train_attn_mu,
)
algorithm = ForgetMeNotAlgorithm(
forget_me_not_train_attn_mu,
)
algorithm.run(train_type="train_attn")
Modify some parameters in pre-defined config class
from mu.algorithms.forget_me_not.algorithm import ForgetMeNotAlgorithm
from mu.algorithms.forget_me_not.configs import (
forget_me_not_train_attn_mu,
)
algorithm = ForgetMeNotAlgorithm(
forget_me_not_train_attn_mu,
ckpt_path="models/diffuser/style50",
raw_dataset_dir=(
"data/quick-canvas-dataset/sample"
),
steps=10,
ti_weights_path="outputs/forget_me_not/finetuned_models/Abstractionism/step_inv_10.safetensors"
)
algorithm.run(train_type="train_attn")
Create your own config class
from mu.algorithms.forget_me_not.algorithm import ForgetMeNotAlgorithm
from mu.algorithms.forget_me_not.configs import (
ForgetMeNotAttnConfig,
)
myconfig = ForgetMeNotAttnConfig()
myconfig.ckpt_path = "models/diffuser/style50"
myconfig.steps = 1
algorithm = ForgetMeNotAlgorithm(
myconfig
)
algorithm.run(train_type="train_attn")